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A molecular dynamics simulation of a Lennard-Jones fluid and a trajectory of the B1 immunoglobulin
G-binding domain of streptococcal protein(B81-lgG) simulated in water are analyzed by recurrence quanti-
fication, which is noteworthy for its independence from stationarity constraints, as well as its ability to detect
transients and both linear and nonlinear state changes. The results demonstrate the sensitivity of the technique
for the discrimination of phase sensitive dynamics. The physical interpretation of the recurrence measures is
also discussedS1063-651X99)11201-7

PACS numbes): 87.15.He, 02.70.Ns

[. INTRODUCTION pendence from stationarity constraints, its ability to detect
both linear and nonlinear dynamifg,8,1], and its ability to
The quantitative analysis of molecular dynami@4D) discriminate between signals and random ndi8k make
trajectories implies the need for the individuation of salientRQA well suited for a detailed characterization of MD tra-
phenomena embodied in time series data: Unique patterns jfctories(e.g., identification of microstatgs
the dynamics require taxonomies. This need has engendered, In this work, RQA was applied to the potential energy
as a consequence, the use of classical multivariate datdne series of conformational space explored during MD
ana|ysis techniques such as principa| components ana|ys$$'ml,l|ati0ns. The main goal was to demonstrate the ability of
(PCA) [1,2] and cluster analysi€CA) [3]. RQA to discriminate the dynamics of a simple systémn
An important criterion for the choice of analysis method Lennard-JonesLJ) fluid, which does not carry any phase
for MD trajectories is the method’s dependence on dynamiinformation, since it is a purely statistical, shuffling-resistant
cal components of the data set and its relative independené&¥stenj from a complex system, such as the MD trajectory
from purely statistical characteristics. This requirement is ex0f B1-IgG simulated in watefa protein that demonstrates
pressible in terms of “phase information” sensitivity and is Shuffling-sensitive phase information, due to the existence of
broadly defined as having properties that are destroyed bgtructured paths between its microstafes].
random shuffling of the series itsef§huffling sensitive in- The testing strategy is straightforward: While in the case
formation. From this perspective, the usual statistical de-of a LJ fluid the RQA measures must remain invariant after
Scriptors(e_g_’ mean and rmslo not carry any phase infor- shuffling, they should change Significantly in the case of the
mation (shuffling resistant while both PCA and CA retain protein. We will try to sketch a physical characterization of
some information about the dynamics of the systaimuf- RQA measures relative to MD.
fling sensitive.

In a previous pap€ei4] we introduced recurrence quanti- Il. MATERIALS AND METHODS
fication analysigRQA) as an alternative analysis technique _ _
to obtain phase information about the energy landscape of A. LJ system MD simulations

simulated polypeptide systems. This technique, proposed by For the LJ simulation, we considered a system of 125
Eckmann, Kamphorst, and Ruelle as a purely graphical togbarticles, enclosed in a cube of sidewith periodic bound-
and made quantitative by Zbilut and WebljBr-7], in con-  ary conditions interacting through a two-body potential of
tradistinction to PCA, gives a local view of the studied se-the LJ type:

ries, based on single distance pairs and not on the distribu-

tion of distances. This means that while autocorrelation V(r)=4[(alr)*?~(alr)®], (1)
functions can only show general trends, RQA is particularly

suited for the detection of fast transiefi& and the conse- with the parameter=3.405 A corresponding to argon and
guent localization in time of the salient features of the dy-the energies expressed in unitseofe=119.8 K) [11]. The
namics such as changes of state. Furthermore, RQA’s indaimulations were performed at different temperatures and
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varyingL at different density. We used the same protocol for g,
both simulations: As a first step, the initial velocities were
taken from a Maxwellian distribution to perform 200 ps of
simulation with only the last 100 ps being used for analysis.
The potential energy time series was sampled at 0.05 ps.

B. Protein MD simulation

All simulations of the protein were performed with the
GROMACS simulation packag¢l12]. A modification[13] of
the GRoMOs87[14] force field was used with additional terms
for aromatic hydrogen$15] and improved carbon-oxygen
interaction parametergl3]. SHAKE [16] was used to con-
strain bond lengths, allowing a time step of 2 fs.

The initial protein configuration was taken from the pro-
tein databanklpga [17]. The protein was immersed in a
pre-equilibrated box of simple point chard§PQ water
[18], while 4 water molecules with the highest electrostatic
potential were replaced by sodium ions, resulting in an elec-
trically neutral cubic box#=4.1 nn) containing 1790 water
molecules and 4 sodium counter ions for a total of 5936 , b i
atoms. Care was taken that all crystallographic water mol- 0 i (ps) 500
ecules be conserved.

In order to prepare the solvated system for molecular dy-
namics, a three-step procedure was followed. Using a re-
straining harmonic potential, all heavy atoms of the proteinm
and the crystallographic water oxygens were constrained t

their initial positions while surrounding SPC water mol- h - atiorh
ecules were first minimized and then submitted to 5 ps Ofrom whatever sourcee.g., system, quantizatiprhowever,

constant volume MD at 300 K. The resulting system wast NS been shown that higher embeddings are necef2ilry

then minimized, without any constraints, before starting cont "oM this it is obvious that the embedding be sufficiently

stant temperature and constant volume MD. A nonbonde&igh S0 as to capture all the essential dynamics: The error of

cutoff of 1.2 nm was used for both LJ and Coulomb poten-ChOOSing a too high an'is not as great as choosing too low

tials. The pair lists were updated every ten steps. A constarft valug an' This Is particular!y_ true _in MD. sim.ulations,.
temperature of 300 K was maintained by coupling to an exWhere it is crucial to have suff_lc_lent.dlmens[onahty to esti-

ternal bath[19] using a coupling constantr& 0.002) equal mate higher-order moments giving information on corrgla-
to the integration time stef? fs). A total of 1.9 ns of simu- tions between the movements of two or more atoms in a

lation were produced in this manner. The potential energy Oprote_in [26]. In the present case, 10 was dictated by our
the protein was sampled every 0.1 ps. previous work on a tetrapeptide dynamjés.
Thus the sequence of vectors), embedded ifR", define

a function on amX n array according to the rule: Darken the
(i,j)th element of the array i; e B(x;,r), whereB(x;,r) is
RQA was introduced to the physical sciences by Eck-the ball or radius, centered ax; (see[4,7] for detaily. The
mann, Kamphorst, and Ruelle in 19 as a purely graphi- features of the distance function make the plot symmetric
cal technique. Five years later Zbilut and Webbel en- D;;=D;; with a darkened main diagonal corresponding to
hanced the technique by defining five nonlinear descriptorthe identity line ©; ;=0,j=i). The darkened points indi-
of the recurrence plot that were found to be diagnosticallyiduate the recurrencesecurrent points of the dynamical
useful in the quantitative assessment of time series structuggocess and the plot can be considered as a global picture of
in fields ranging from molecular dynamics to physiology the autocorrelation structure of the system. Consequently, a
[4,20,21. This technique has been demonstrated to be parecurrence plot visualizes the distance matrix, which in turn
ticularly useful in quantifying transient behavior far from represents the autocorrelation present in the series at all pos-
equilibrium in relatively short time serid8]. This feature is  sible time scales. In fact, it is important to note that the
particularly important in the detection of unique patterns indistance is computed for all the possible pairs of epochs, the
complex data set2]. elements near the principal diagonal of the plot correspond-
RQA is based on the computation of a Euclidean distancég to short-range correlatiorithe diagonal marks the iden-
matrix between the rowépoch of an embedded matrix of tity in time), and the long-range correlations corresponding
the scalar time serieén this case the MD simulations of to points distant from the main diagonal. Besides the global
potential energyat a fixed lagtime delay method as origi-  impression given by the graphic appearance of the (sie¢
nally suggested by Ruelle and recorded by Paclardl.  Figs. 1 and 2 for the RQA plot of the protein and the fjuid
[23]. Takens's[24] theorem states a mathematical relationthe measures developed by Webber and ZHify8] allow
between the embedding dimension of a suitable scalar oder a quantitative description of the recurrence structure of
servable and the real dimension of the attractor of the correthe plot. This is an important consideration since visual in-
sponding dynamical systemtl): n=2d+ 1, wheren is the  spection of plots can at times lend themselves to misinterpre-

(Ps) |

FIG. 1. Protein recurrence plot.
inimum embedding dimension to ensure the reconstruct-

ility of the underlying attractor. This relation holds true for
eterministic, noiseless, systems. In the presence of noise
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and Lyapunov exponents is a proof of this pdifi. ENT
denotes entropy, which is defined in terms of the Shannon-
Weaver formula for information entrop}7,30] computed
over the distribution of length of the lines of recurrent points
and measures the richness of deterministic structuring of the
series. LYAP is simply the lengtfin terms of consecutive
pointg of the longest recurrent line in the plot. LYAP was
found to accurately predigt=0.93 the value of the maxi-
mum Lyapunov exponent in a logistic map going from a
regular to chaotic regimg8]. Finally, TREND is the regres-
sion coefficient of the relation between tinfm terms of
distance from the main diagonadnd the amount of recur-
rence. TREND quantifies the fading away of recurrence go-
ing forward in time and represents a measure of stationarity
[7]. Additionally, a time series of any of the RQA descriptors
can be produced by windowing the originally embedded sca-
lar series and overlapping in a manner similar to time-
varying spectral plotésee, e.g.[8] and Figs. 3, 4, and)7

100

IV. RESULTS

All RQA descriptors were computed for both the LJ fluid
and the protein MD potential energy time series. In particu-
lar, for the fluid, data from a simulation &t=0.8 (usual
reduced unjtwere used. To test for the null hypothesis that
tation due to the vagaries of human perception. Additionallyfh® MD series are stochastic, the original trajectories were
quantification then allows for hypothesis testing. randomly shuffled to obtain 30 copies of each sefiEable

The RQA descriptors are as follows. REC denotes recurt)- The 95% confidence intervals for the RQA descriptors

rence, which quantifies the percentage of the plot occupie}ﬂ’ere computed and the position of the original series relative

: : to the confidence intervals checked. Except for R@&@d
by recurrent points. It corresponds to the proportion of recurs - . :
y P b brop here it is noted that the value for the MD simulation falls

rent pairs over all the possible pairs of epochs or, equiva-'; = . . .
lently, the proportion of pairwise distances below the chose ithin th? range of obtalneq shufﬂm)g_sthe null hypothesis .
or LJ fluid could not be rejected, pointing to the stochastic

radius among all the computed distances. DET denotes d o X ,
“haracter of the fluid simulation. For the protein MD, how-

terminism and is the percentage of recurrent points that apc , o
pear in sequence, forming diagonal line structures in the disSVe": the RQA values were well beyond the confidence limits
f the shuffled series, thus demonstrating the presence of

tance matrix. DET corresponds to the amount of patches of “oh inf ion” for th ind s Th
recurrent behavior in the studied series, i.e., to portions ofrONd “Phase information™ for the protein dynamics. These

the state space in which the system resides for a time long patures are qualitativel)_/ e.vident when Iooking at .the recur-
than expected by chance alofsee[27,28). This is a crucial rence plots .Of the proteitFig. 1) and th? LJ pr|d(F|g. 2):
point: A recurrence can, in principle, be observed by chancd/Nile protein shows a very rich and intermingled texture,
whenever the system explores two nearby points of its stat'® LJ Plot is much more homogeneous.

space. On the contrary, the observation of recurrent points
consecutive in timgand then forming lines parallel to the
main diagonal is an important signature of deterministic A relevant portion of the theoretical work on MD was
structuring[5,29]. The superposition between determinismbased upon LJ fluid simulations performed by Rahi&t].

0 i (ps)

FIG. 2. LJ fluid recurrence plot.

V. DISCUSSION

TABLE I. RQA results for shuffling.

Shuffled mean 95% confidence interval Range MD simulation
LJ Fluid
REC 0.76 0.74-0.78 0.66-0.87 0.688
DET 39.47 38.85-40.08 36.57-42.63 39.03
ENT 2.33 2.31-2.35 2.25-2.50 2.347
LYAP 17 16-18 14-21 16
TREND 0.009 —0.03-0.05 —0.23-0.24 —0.005
Protein
REC 0.72 0.69-0.75 0.58-0.86 5.12
DET 39.20 38.08-40.31 33.20-44.88 69.48
ENT 231 2.27-2.36 2.06-2.62 3.25
LYAP 14 13-15 10-21 31
TREND 0.033 —0.08-0.15 —0.45-0.81 -2.27
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These trajectories can be defined as recurrent, Hamiltoniatime-independent equations: This corresponds to our opera-
mixing, andK flow, or following some authors, “Lyapunov tional definition of a “shuffling resistant” potential energy
unstable”[32]. The simulated LJ system evolves toward antime series. In fact, the RQA measures of the shuffled series
equilibrium state and the constant energy surface defined bgre not statistically different from the original series. This
the initial conditions is accessible to the system itself. Thebehavior corresponds to a randomlike sampling of the phase
motion of such a system is at least mixing so as to sample aipace of the system, even if the sampling is driven by a
the explored surface. deterministic “engine” such as MD. These kinds of “ex-
In the case of the LJ fluid, the result obtained, in Eck-periments” were used by Verlet and co-workéfd,33 to

mann, Kamphorst, and Ruelle’s terii, can be defined as compute thermodynamic properties of fluids following a for-
“autonomous,” i.e., typical of a system evolving following malization introduced by Birkhoff34,35 and based on
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FIG. 6. Detail of Fig. 1 protein with two sectiorisquares, up-
per right and lower lejtclearly separated, representing two differ-
ent microstates.

FIG. 5. Simulated annealing tripeptide recurrence plot.

Boltzmann’s view of ergodicity assumptions.

The recurrence plot of the protein simulati@fig. 1) im-  “ergodic” constraints of complete accessibility and mixing
mediately shows the impossibility of direct averaging of theare not sufficient to make the system evolve to an equilib-
data. The simple visual inspection of the plot highlightsrium situation given the finite time of the simulation and as a
abrupt changes in the texture pointing to multiple minima inresult the trajectory is trapped in a limited portion of the
the trajectory(rugged landscape as opposed to flat sujface energy surface. In such situations we can speak of metastable
This point is underscored in Fig. 3, which depicts REC andstates[36,37], which obviate the possibility of computing
DET in a windowed series. REC presents as a rugged landtirect averages. In order to compute physical measures on
scape, while DET displays several discontinuities. More im-such simulations, the local minima of the phase space must
portantly, the shuffling procedure significantly alters the nu-be revealed and their relative depth estimated.
merical values of the RQA descriptors, thus demonstrating The thermalization algorithms used in MD are not guar-
the “shuffling sensitivity” of the underlying trajectory. The anteed to preserve the microcanonic properties of the system

-3000 T T T T T T T
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crostates at 78—81 ps.
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[19]; nevertheless, we think that the quantitative RQA mea- s3
sures can be correlated to the thermodynamic properties @
the system under investigation. In any case, these measure
allow us to derive some useful information about the shape
of the energy landscape of the simulation. As a matter of
fact, the basic algorithm of recurrence plots was developec
by Eckmannet al. [38] with the aims of reconstructing the
dynamics relative to a time series in a finite-dimensional
space and of generating a tangent map of the reconstructe
dynamics in order to calculate Lyapunov exponents.

In the recurrence plot, a recurrence is scofadd the  j(ps)
respective point darkengdvhenever|x;—x;|<d. We can
think of this inequality as the numerator of the incremental
ratio, dy/dx, wheredx corresponds to the time interval be-
tween two sampled points in phase space. Thus the recurrel
points are corresponding segments of the trajectory going
through valleys of the multidimensional space on which the
potential energy is projected by the embedding procedure
These valleys have, by definition, a low slog® (and thus
they are recurrent in phase spad®n a more general note, o
the global texture of the plot is linked to the ruggedness of o i (ps) 83
the explored landscape. A dense texture is linked to smooth
slopes and a flat landscape, while a coarse texture points to
steeper energetic barriers with the lack of texttme recur-  [40]. Thus potential energy is suited for the studied time
rent points at ajl revealing transitions. This qualitative pic- scale. In a related matter, while the generalized ergodic mea-
ture is consistent with the analysis of the logistic map bysure (GEM) of Straub and Thirumaldi41] can compute a
RQA [8] where the phase transitions of the syst@manges distribution of energy barriers between substrates, currently
in dynamical regimpwere registered by the RQA measures.this is not possible with RQA. The advantage of RQA over

Looking at the recurrence plot of the LJ fluiig. 2), the  GEM is its sensitivity to local fast transients, thus being
loss of any preferential directionality of the systéquanti-  much more suited to dynamically individuate phase transi-
tatively proved by the shuffling invariancés clear. REC tions. In this sense, the two methods are complementary: The
(Fig. 4) is considerably smoother than Fig. 3, while DET is GEM is better for energy characterization and RQA is better
erratic, reflective of the very low recurrence values. The difor time resolution.
rectionality of Fig. 2 is highlighted when it is compared to  Finally, it should be remarked that RQA allows for the
the plot relative to the annealing phase of a tripeptflg. 5 identification of putatively important events along the stud-
(see[4]) where the directionality was imposed by a strongied dynamics using only one variab{potential energyin-
order parameter, i.e., decrease of temperature. The protegtead of manye.g., single dihedral anglesThe meaning of
recurrence ploiFig. 1) has a preferential directionality in these events may in fact require specific analyses using vari-
time (shuffling sensitivity that allows us to appreciate the ables such as vibrational times, ring flips of amino acids,
effective dimensionality of the explored conformational folding times, protonation times, or diffusion times of water
space. With an adequate sampling time we can resolve bo#nd require a case by case approach. Our analysis is particu-
the Frauenfelder substratel),26,39 in terms of large-scale larly useful in the calculation of free energy difference be-
typology of the plot(Figs. 6 and Y and the features of the tween reactant and product in which various MD simulations
single substrate in terms of textu(€ig. 8). can reduce uncertainties in free energy calculat(d$, al-

It is important to note that, in practice, several differentthough, as with MD studies in general, it is still limited by
variables could have been chosen for the MD simulationsthe general time scale of physiologically important substrates
such as Coulomb energy or van der Waals energy. Potentigthat are on the order of tens of microseconds to milliseconds.
energy was chosen since it is a global descriptor of the physin summary, RQA seems to constitute a very promising tool
cal motions that can be adequately samp@l relative to  for the characterization of conformational substrates in MD
long relaxation times as compared to anharmonic motionsimulations.

FIG. 8. Detail of lower left microstate of Fig. 6.
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