
PHYSICAL REVIEW E JANUARY 1999VOLUME 59, NUMBER 1
Recurrence quantification analysis as a tool for characterization
of molecular dynamics simulations
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A molecular dynamics simulation of a Lennard-Jones fluid and a trajectory of the B1 immunoglobulin
G-binding domain of streptococcal protein G~B1-IgG! simulated in water are analyzed by recurrence quanti-
fication, which is noteworthy for its independence from stationarity constraints, as well as its ability to detect
transients and both linear and nonlinear state changes. The results demonstrate the sensitivity of the technique
for the discrimination of phase sensitive dynamics. The physical interpretation of the recurrence measures is
also discussed.@S1063-651X~99!11201-7#

PACS number~s!: 87.15.He, 02.70.Ns
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I. INTRODUCTION

The quantitative analysis of molecular dynamics~MD!
trajectories implies the need for the individuation of salie
phenomena embodied in time series data: Unique pattern
the dynamics require taxonomies. This need has engend
as a consequence, the use of classical multivariate
analysis techniques such as principal components ana
~PCA! @1,2# and cluster analysis~CA! @3#.

An important criterion for the choice of analysis meth
for MD trajectories is the method’s dependence on dyna
cal components of the data set and its relative independ
from purely statistical characteristics. This requirement is
pressible in terms of ‘‘phase information’’ sensitivity and
broadly defined as having properties that are destroyed
random shuffling of the series itself~shuffling sensitive in-
formation!. From this perspective, the usual statistical d
scriptors~e.g., mean and rms! do not carry any phase infor
mation ~shuffling resistant!, while both PCA and CA retain
some information about the dynamics of the system~shuf-
fling sensitive!.

In a previous paper@4# we introduced recurrence quant
fication analysis~RQA! as an alternative analysis techniq
to obtain phase information about the energy landscap
simulated polypeptide systems. This technique, propose
Eckmann, Kamphorst, and Ruelle as a purely graphical
and made quantitative by Zbilut and Webber@5–7#, in con-
tradistinction to PCA, gives a local view of the studied s
ries, based on single distance pairs and not on the distr
tion of distances. This means that while autocorrelat
functions can only show general trends, RQA is particula
suited for the detection of fast transients@8# and the conse-
quent localization in time of the salient features of the d
namics such as changes of state. Furthermore, RQA’s i
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pendence from stationarity constraints, its ability to det
both linear and nonlinear dynamics@7,8,1#, and its ability to
discriminate between signals and random noise@9# make
RQA well suited for a detailed characterization of MD tr
jectories~e.g., identification of microstates!.

In this work, RQA was applied to the potential energ
time series of conformational space explored during M
simulations. The main goal was to demonstrate the ability
RQA to discriminate the dynamics of a simple system@a
Lennard-Jones~LJ! fluid, which does not carry any phas
information, since it is a purely statistical, shuffling-resista
system# from a complex system, such as the MD trajecto
of B1-IgG simulated in water~a protein that demonstrate
shuffling-sensitive phase information, due to the existence
structured paths between its microstates! @10#.

The testing strategy is straightforward: While in the ca
of a LJ fluid the RQA measures must remain invariant af
shuffling, they should change significantly in the case of
protein. We will try to sketch a physical characterization
RQA measures relative to MD.

II. MATERIALS AND METHODS

A. LJ system MD simulations

For the LJ simulation, we considered a system of 1
particles, enclosed in a cube of sideL, with periodic bound-
ary conditions interacting through a two-body potential
the LJ type:

V~r !54@~s/r !122~s/r !6#, ~1!

with the parameters53.405 Å corresponding to argon an
the energies expressed in units ofe (e5119.8 K! @11#. The
simulations were performed at different temperatures
992 ©1999 The American Physical Society
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varyingL at different density. We used the same protocol
both simulations: As a first step, the initial velocities we
taken from a Maxwellian distribution to perform 200 ps
simulation with only the last 100 ps being used for analys
The potential energy time series was sampled at 0.05 ps

B. Protein MD simulation

All simulations of the protein were performed with th
GROMACS simulation package@12#. A modification @13# of
theGROMOS87@14# force field was used with additional term
for aromatic hydrogens@15# and improved carbon-oxyge
interaction parameters@13#. SHAKE @16# was used to con-
strain bond lengths, allowing a time step of 2 fs.

The initial protein configuration was taken from the pr
tein databank~1pga! @17#. The protein was immersed in
pre-equilibrated box of simple point charge~SPC! water
@18#, while 4 water molecules with the highest electrosta
potential were replaced by sodium ions, resulting in an e
trically neutral cubic box (a.4.1 nm! containing 1790 water
molecules and 4 sodium counter ions for a total of 59
atoms. Care was taken that all crystallographic water m
ecules be conserved.

In order to prepare the solvated system for molecular
namics, a three-step procedure was followed. Using a
straining harmonic potential, all heavy atoms of the prot
and the crystallographic water oxygens were constraine
their initial positions while surrounding SPC water mo
ecules were first minimized and then submitted to 5 ps
constant volume MD at 300 K. The resulting system w
then minimized, without any constraints, before starting c
stant temperature and constant volume MD. A nonbon
cutoff of 1.2 nm was used for both LJ and Coulomb pote
tials. The pair lists were updated every ten steps. A cons
temperature of 300 K was maintained by coupling to an
ternal bath@19# using a coupling constant (t50.002) equal
to the integration time step~2 fs!. A total of 1.9 ns of simu-
lation were produced in this manner. The potential energy
the protein was sampled every 0.1 ps.

III. RECURRENCE QUANTIFICATION ANALYSIS

RQA was introduced to the physical sciences by E
mann, Kamphorst, and Ruelle in 1987@5# as a purely graphi-
cal technique. Five years later Zbilut and Webber@6# en-
hanced the technique by defining five nonlinear descrip
of the recurrence plot that were found to be diagnostica
useful in the quantitative assessment of time series struc
in fields ranging from molecular dynamics to physiolo
@4,20,21#. This technique has been demonstrated to be
ticularly useful in quantifying transient behavior far fro
equilibrium in relatively short time series@8#. This feature is
particularly important in the detection of unique patterns
complex data sets@22#.

RQA is based on the computation of a Euclidean dista
matrix between the rows~epoch! of an embedded matrix o
the scalar time series~in this case the MD simulations o
potential energy! at a fixed lag~time delay method!, as origi-
nally suggested by Ruelle and recorded by Packardet al.
@23#. Takens’s@24# theorem states a mathematical relati
between the embedding dimension of a suitable scalar
servable and the real dimension of the attractor of the co
sponding dynamical system (d): n52d11, wheren is the
r
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minimum embedding dimension to ensure the reconstr
ibility of the underlying attractor. This relation holds true fo
deterministic, noiseless, systems. In the presence of n
from whatever source~e.g., system, quantization!, however,
it has been shown that higher embeddings are necessary@25#.
From this it is obvious that the embedding be sufficien
high so as to capture all the essential dynamics: The erro
choosing a too high ann is not as great as choosing too lo
a value ofn. This is particularly true in MD simulations
where it is crucial to have sufficient dimensionality to es
mate higher-order moments giving information on corre
tions between the movements of two or more atoms in
protein @26#. In the present case, 10 was dictated by o
previous work on a tetrapeptide dynamics@4#.

Thus the sequence of vectors (xi), embedded inRn, define
a function on ann3n array according to the rule: Darken th
( i , j )th element of the array ifxjPB(xi ,r ), whereB(xi ,r ) is
the ball or radiusr , centered atxi ~see@4,7# for details!. The
features of the distance function make the plot symme
Di , j5D j ,i with a darkened main diagonal corresponding
the identity line (Di , j50,j 5 i ). The darkened points indi
viduate the recurrences~recurrent points! of the dynamical
process and the plot can be considered as a global pictu
the autocorrelation structure of the system. Consequentl
recurrence plot visualizes the distance matrix, which in tu
represents the autocorrelation present in the series at all
sible time scales. In fact, it is important to note that t
distance is computed for all the possible pairs of epochs,
elements near the principal diagonal of the plot correspo
ing to short-range correlations~the diagonal marks the iden
tity in time!, and the long-range correlations correspond
to points distant from the main diagonal. Besides the glo
impression given by the graphic appearance of the plot~see
Figs. 1 and 2 for the RQA plot of the protein and the fluid!,
the measures developed by Webber and Zbilut@7,8# allow
for a quantitative description of the recurrence structure
the plot. This is an important consideration since visual
spection of plots can at times lend themselves to misinter

FIG. 1. Protein recurrence plot.
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994 PRE 59CESARE MANETTI et al.
tation due to the vagaries of human perception. Additiona
quantification then allows for hypothesis testing.

The RQA descriptors are as follows. REC denotes rec
rence, which quantifies the percentage of the plot occup
by recurrent points. It corresponds to the proportion of rec
rent pairs over all the possible pairs of epochs or, equ
lently, the proportion of pairwise distances below the cho
radius among all the computed distances. DET denotes
terminism and is the percentage of recurrent points that
pear in sequence, forming diagonal line structures in the
tance matrix. DET corresponds to the amount of patche
recurrent behavior in the studied series, i.e., to portions
the state space in which the system resides for a time lo
than expected by chance alone~see@27,28#!. This is a crucial
point: A recurrence can, in principle, be observed by cha
whenever the system explores two nearby points of its s
space. On the contrary, the observation of recurrent po
consecutive in time~and then forming lines parallel to th
main diagonal! is an important signature of determinist
structuring @5,29#. The superposition between determinis

FIG. 2. LJ fluid recurrence plot.
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and Lyapunov exponents is a proof of this point@5#. ENT
denotes entropy, which is defined in terms of the Shann
Weaver formula for information entropy@7,30# computed
over the distribution of length of the lines of recurrent poin
and measures the richness of deterministic structuring of
series. LYAP is simply the length~in terms of consecutive
points! of the longest recurrent line in the plot. LYAP wa
found to accurately predict~r50.93! the value of the maxi-
mum Lyapunov exponent in a logistic map going from
regular to chaotic regime@8#. Finally, TREND is the regres-
sion coefficient of the relation between time~in terms of
distance from the main diagonal! and the amount of recur
rence. TREND quantifies the fading away of recurrence
ing forward in time and represents a measure of stationa
@7#. Additionally, a time series of any of the RQA descripto
can be produced by windowing the originally embedded s
lar series and overlapping in a manner similar to tim
varying spectral plots~see, e.g.,@8# and Figs. 3, 4, and 7!.

IV. RESULTS

All RQA descriptors were computed for both the LJ flu
and the protein MD potential energy time series. In partic
lar, for the fluid, data from a simulation atT50.8 ~usual
reduced unit! were used. To test for the null hypothesis th
the MD series are stochastic, the original trajectories w
randomly shuffled to obtain 30 copies of each series~Table
I!. The 95% confidence intervals for the RQA descripto
were computed and the position of the original series rela
to the confidence intervals checked. Except for REC~and
here it is noted that the value for the MD simulation fa
within the range of obtained shufflings!, the null hypothesis
for LJ fluid could not be rejected, pointing to the stochas
character of the fluid simulation. For the protein MD, how
ever, the RQA values were well beyond the confidence lim
of the shuffled series, thus demonstrating the presenc
strong ‘‘phase information’’ for the protein dynamics. The
features are qualitatively evident when looking at the rec
rence plots of the protein~Fig. 1! and the LJ fluid~Fig. 2!:
While protein shows a very rich and intermingled textu
the LJ plot is much more homogeneous.

V. DISCUSSION

A relevant portion of the theoretical work on MD wa
based upon LJ fluid simulations performed by Rahman@31#.
ion
TABLE I. RQA results for shuffling.

Shuffled mean 95% confidence interval Range MD simulat
LJ Fluid

REC 0.76 0.74–0.78 0.66–0.87 0.688
DET 39.47 38.85–40.08 36.57–42.63 39.03
ENT 2.33 2.31–2.35 2.25–2.50 2.347
LYAP 17 16–18 14–21 16
TREND 0.009 20.03–0.05 20.23–0.24 20.005
Protein

REC 0.72 0.69–0.75 0.58–0.86 5.12
DET 39.20 38.08–40.31 33.20–44.88 69.48
ENT 2.31 2.27–2.36 2.06–2.62 3.25
LYAP 14 13–15 10–21 31
TREND 0.033 20.08–0.15 20.45–0.81 22.27
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FIG. 3. Time series of protein
MD simulation ~top!, with the re-
spective REC and DET plots, cal
culated on a 200 point windowed
series overlapping one point at
time.
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These trajectories can be defined as recurrent, Hamilton
mixing, andK flow, or following some authors, ‘‘Lyapunov
unstable’’ @32#. The simulated LJ system evolves toward
equilibrium state and the constant energy surface define
the initial conditions is accessible to the system itself. T
motion of such a system is at least mixing so as to sample
the explored surface.

In the case of the LJ fluid, the result obtained, in Ec
mann, Kamphorst, and Ruelle’s terms@5#, can be defined as
‘‘autonomous,’’ i.e., typical of a system evolving followin
n,

by
e
ll

-

time-independent equations: This corresponds to our op
tional definition of a ‘‘shuffling resistant’’ potential energ
time series. In fact, the RQA measures of the shuffled se
are not statistically different from the original series. Th
behavior corresponds to a randomlike sampling of the ph
space of the system, even if the sampling is driven b
deterministic ‘‘engine’’ such as MD. These kinds of ‘‘ex
periments’’ were used by Verlet and co-workers@11,33# to
compute thermodynamic properties of fluids following a fo
malization introduced by Birkhoff@34,35# and based on
FIG. 4. Time series of LJ fluid
simulation ~top!, with the respec-
tive REC and DET plots, calcu-
lated as in Fig. 3.
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Boltzmann’s view of ergodicity assumptions.
The recurrence plot of the protein simulation~Fig. 1! im-

mediately shows the impossibility of direct averaging of t
data. The simple visual inspection of the plot highligh
abrupt changes in the texture pointing to multiple minima
the trajectory~rugged landscape as opposed to flat surfa!.
This point is underscored in Fig. 3, which depicts REC a
DET in a windowed series. REC presents as a rugged la
scape, while DET displays several discontinuities. More
portantly, the shuffling procedure significantly alters the n
merical values of the RQA descriptors, thus demonstra
the ‘‘shuffling sensitivity’’ of the underlying trajectory. The

FIG. 5. Simulated annealing tripeptide recurrence plot.
d
d-
-
-
g

‘‘ergodic’’ constraints of complete accessibility and mixin
are not sufficient to make the system evolve to an equi
rium situation given the finite time of the simulation and as
result the trajectory is trapped in a limited portion of th
energy surface. In such situations we can speak of metas
states@36,37#, which obviate the possibility of computing
direct averages. In order to compute physical measures
such simulations, the local minima of the phase space m
be revealed and their relative depth estimated.

The thermalization algorithms used in MD are not gu
anteed to preserve the microcanonic properties of the sys

FIG. 6. Detail of Fig. 1 protein with two sections~squares, up-
per right and lower left! clearly separated, representing two diffe
ent microstates.
f

-

FIG. 7. Section of protein MD
simulation between microstates o
Fig. 6 ~top!, with the respective
DET plot. Note the clear diver-
gence between the two mi
crostates at 78–81 ps.
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@19#; nevertheless, we think that the quantitative RQA m
sures can be correlated to the thermodynamic propertie
the system under investigation. In any case, these meas
allow us to derive some useful information about the sh
of the energy landscape of the simulation. As a matter
fact, the basic algorithm of recurrence plots was develo
by Eckmannet al. @38# with the aims of reconstructing th
dynamics relative to a time series in a finite-dimensio
space and of generating a tangent map of the reconstru
dynamics in order to calculate Lyapunov exponents.

In the recurrence plot, a recurrence is scored~and the
respective point darkened! wheneveruxj2xi u,d. We can
think of this inequality as the numerator of the incremen
ratio, dy/dx, wheredx corresponds to the time interval be
tween two sampled points in phase space. Thus the recu
points are corresponding segments of the trajectory go
through valleys of the multidimensional space on which
potential energy is projected by the embedding proced
These valleys have, by definition, a low slope (d) ~and thus
they are recurrent in phase space!. On a more general note
the global texture of the plot is linked to the ruggedness
the explored landscape. A dense texture is linked to smo
slopes and a flat landscape, while a coarse texture poin
steeper energetic barriers with the lack of texture~no recur-
rent points at all! revealing transitions. This qualitative pic
ture is consistent with the analysis of the logistic map
RQA @8# where the phase transitions of the system~changes
in dynamical regime! were registered by the RQA measure

Looking at the recurrence plot of the LJ fluid~Fig. 2!, the
loss of any preferential directionality of the system~quanti-
tatively proved by the shuffling invariance! is clear. REC
~Fig. 4! is considerably smoother than Fig. 3, while DET
erratic, reflective of the very low recurrence values. The
rectionality of Fig. 2 is highlighted when it is compared
the plot relative to the annealing phase of a tripeptide~Fig. 5!
~see@4#! where the directionality was imposed by a stro
order parameter, i.e., decrease of temperature. The pro
recurrence plot~Fig. 1! has a preferential directionality in
time ~shuffling sensitivity! that allows us to appreciate th
effective dimensionality of the explored conformation
space. With an adequate sampling time we can resolve
the Frauenfelder substrates@10,26,39# in terms of large-scale
typology of the plot~Figs. 6 and 7! and the features of the
single substrate in terms of texture~Fig. 8!.

It is important to note that, in practice, several differe
variables could have been chosen for the MD simulatio
such as Coulomb energy or van der Waals energy. Pote
energy was chosen since it is a global descriptor of the ph
cal motions that can be adequately sampled@26# relative to
long relaxation times as compared to anharmonic moti
ro
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@40#. Thus potential energy is suited for the studied tim
scale. In a related matter, while the generalized ergodic m
sure ~GEM! of Straub and Thirumalai@41# can compute a
distribution of energy barriers between substrates, curre
this is not possible with RQA. The advantage of RQA ov
GEM is its sensitivity to local fast transients, thus bei
much more suited to dynamically individuate phase tran
tions. In this sense, the two methods are complementary:
GEM is better for energy characterization and RQA is be
for time resolution.

Finally, it should be remarked that RQA allows for th
identification of putatively important events along the stu
ied dynamics using only one variable~potential energy! in-
stead of many~e.g., single dihedral angles!. The meaning of
these events may in fact require specific analyses using v
ables such as vibrational times, ring flips of amino aci
folding times, protonation times, or diffusion times of wat
and require a case by case approach. Our analysis is par
larly useful in the calculation of free energy difference b
tween reactant and product in which various MD simulatio
can reduce uncertainties in free energy calculations@42#, al-
though, as with MD studies in general, it is still limited b
the general time scale of physiologically important substra
that are on the order of tens of microseconds to millisecon
In summary, RQA seems to constitute a very promising t
for the characterization of conformational substrates in M
simulations.

FIG. 8. Detail of lower left microstate of Fig. 6.
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